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A central idea of modern geometric analysis is the assignment of a geometric 
structure, usually called the symbol ,  to a differential operator. It is known that 
this operation is closely related to quantum mechanics. For a class of linear 
operators, including the Dirac operator, a geometric structure, called a co- 

Riemannian metric,  is assigned to such symbols. Certain other topics related to 
the geometric structure of quantum mechanics, e.g., the symplectic structure of 
the projective space of Hilbert space, axe briefly treated. 

1. I N T R O D U C T I O N  

F r o m  the perspect ive  of con t empora ry  mathemat ics ,  classical  mathe-  
mat ica l  physics  is a mixture  of mater ia l  from what  we now call "ca lculus  on 
mani fo lds , "  Lie group theory,  and "concre te"  funct ional  analysis  (to use the 
marve lous  phrase  of  Paul Lrvy, 1924). Q u a n t u m  mechanics ,  as deve loped  in 
the 1920s, grew from these roots  to involve a more  abs t rac t  level of  
mathemat ics .  All  c o n t e m p o r a r y  treatises follow the lead of von N e u m a n n  
(1955) and emphas ize  this " a b s t r a c t "  funct ional  analysis.  This creates a 
d i scon t inu i ty  between quan tum mechanics  and other  physical  theories that  
might  be in par t  respons ib le  for the diff icul ty  in making  a ma themat ica l ly  
v iable  and useful re lat ion between quan tum field theory and e lementa ry  

par t ic le  theory.  
I have long thought  there might  be an a l ternat ive  founda t iona l  t reat-  

men t  of q u a n t u m  mechanics  in terms of ideas of mani fo ld  di f ferent ia l  
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geometry. I have already published several fragments of my ideas 
(Hermann, 1965: 1966: 1970a, b; 1972a, 1973a-d; 1974; 1975; 1977a, b, 
1978), and hope it might be fruitful to develop a fuller sketch of a possible 
theory. I emphasize the word sketch--much foundational work remains 
before it is a serious competitor to the functional analysis viewpoint. 

The essence of a "'geometric" approach to analysis is to attach "geo- 
metric structures" to analytic and algebraic objects, to find a "space" where 
abstract objects may live. While conventional quantum mechanics starts off 
with a Hilbert space (or an alternate algebro-analytic structure, like a C* 
algebra) as given axiomatically, a geometric approach will emphasize that 
the objects are "t ied down" geometrically, e.g., as cross sections of fiber 
bundles on manifolds. I will try to develop such ideas here for the founda- 
tions of quantum mechanics. I will not work in maximum generality, but 
will concentrate on the geometric description of the Hilbert spaces associ- 
ated with Dirac-like equations and certain associated "infinite-dimensional 
symplectic manifolds." First, I will review some aspects of the theory of two 
relevant mathematical structures, the first-order linear differential operators 
(like the Dirac operator) and the Riemannian metrics and cometrics 
(Hermann, 1973c, d; 1976). 

Such material involves the traditional sort of "geometric objects" 
attached to finite-dimensional manifolds. There are also vast possibilities of 
creating a new differential geometry of infinite-dimensional spaces, much in 
the spirit of L6vy's (1924) (and Volterra's) pioneering efforts. At the end of 
this review, I will briefly go into one such effort, an outgrowth of Hermann 
(1965). (The "quantum phase space" is the cotangent bundle of the space of 
smooth probability measures on the classical configuration space.) There are 
obvious possibilities of similar theories to describe quantum and field-theo- 
retic phenomena. Until recently, the mathematical theory of infinite-dimen- 
sional manifolds and differential geometry has not been well adapted to the 
needs of the physical and system-theoretic applications. However, the recent 
hybrid theory of pseudodifferential and Fourier integral operators (Treves, 
1980: Taylor, 1981; Grossman et al., 1968) is much better adapted to these 
needs, and I am more optimistic that there is some payoff to the effort of 
introducing more general machinery. Of course, this subject itself has part 
of its roots in mathematical physics and quantum mechanics, particularly 
the WKB and Feynman path integral expansions. 

Another subject of great potential for application in physics and 
engineering is the theory of the sort of infinite-dimensional Lie groups and 
algebras called gauge groups and current algebras (Hermann, 1966; 1969; 
1970a; 1973b). (In the recent mathematical literature, they are called local 
Lie algebras.) These objects are also closely linked to a theory of infinite- 
dimensional manifolds. 
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It is an honor for me to dedicate this material to Professor Dirac, since 
it is he who has initiated and developed this "geometric" picture of 
quantum mechanics. Perhaps one might hope that, at this geometric level, 
there will someday be a Hegelian synthesis of the ideas of Einstein and 
other founders of quantum mechanics. 

I would also like to thank Professor Gerhard Emsch, who made useful 
suggestions about improving a first draft of this work. 

2. FIRST-ORDER LINEAR DIFFERENTIAL OPERATORS ON 
VECTOR BUNDLES OVER MANIFOLDS 

Let X be a manifold. (Assume for simplicity that all manifolds are 
finite dimensional and Coo. Maps between manifolds are "smooth,"  i.e., 
C ~176 unless mentioned otherwise.) Let ~Y(X) be the algebra of Coo real- 
valued functions over X. Let 

~ : E ~ X  

be a vector bundle over X whose fibers are finite-dimensional, complex 
vector spaces. Let F (E)  be the space of cross sections, considered as an 
'5(X) module. 

For each integer m, let D " ( E )  be the space of mth-order, linear 
differential operators: F ( E ) ~  F(E).  What is characteristic of "modern"  
(i.e., post-1960) differential geometry is to attach geometric structures to 
such differential operators. Previously, it was quite common to attach 
differential operators to geometric structures. The Laplace-Beltrami opera- 
tor attached to a Riemannian metric was the traditional example. Another 
such theory was the main theme of Darboux' monumental treatise La 
Theorie des Surfaces: studying surfaces by attaching second-order linear 
differential operators in two independent variables to them. Many ideas that 
have proved so fruitful in modern inverse scattering-soliton theory can also 
be discerned in that treatise, e.g., the B~cklund transformation for the 
sine-Gordon equation. 

In this paper, I shall concentrate on m = 1, i.e., on attaching geometric 
structures to first-order, linear differential operators. (The Dirac equation is, 
of course, the prototype.) Now, what we have learned in the theory of 
"pseudodifferential operators" (Treves, 1980; Taylor, 1981; Hermann, 
1977c) is the importance of attaching a geometric object called a symbol to 
differential operators. This symbol will (for linear differential operators) be 
a cross section of a vector bundle. In Hermann (1973a) I have developed a 
way of doing this which is a generalization of the way vector fields are 
defined in differential operators, i.e., as derivatives of rings of functions. Let 
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us review this now for the easiest use of a first-order linear differential 
operator. 

Let 

D: r ( e )  ~ r ( e )  

be such an operator. For f E  ~(X),  let 

o(S,D) 

be the commutator of D with multiplication by f: 

o ( S , D ) ( v ) = D ( f y ) - f D ( y )  f o r y e F ( E )  (1) 

By the very definition (Hermann, 1973a) of "first-order operator," o(f ,  D) 
is a zeroth-order operator, i.e., is an '.~(X) linear mapping of F ( E ) ~  F(E). 
The following algebraic property is the key to assigning a "geometric" 
structure to the operator. 

Theorem 2.1. If DE DI( E), then 

o(fl f2,D)=flo(f2,  D)+f2o(fi ,D ) for f l , / 2~  VY(X ) (2) 

Proof Let m S be the operator of multiplication by f ~  <5:(X). Then, by 
definition 

Hence, 

o(S, D)--[D,m/] (3) 

By hypothesis, [D, ms] is a zeroth-order operator, i.e., it commutes with mi> .. 
Hence, 

.I s,s,, ~)-- ,,,,. [ ~, m,,] + ~,,[ ~, .,,,] 

which, after using (3), gives relation (2). �9 
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Algebraically, relation (2) says that o is a derivation of the algebra 
~ ( X )  into the algebra of all linear operators on F(E) .  In case E is the 
product X X R, i.e., F ( E )  is ' 5 (X)  itself, (2) is the familiar algebraic identity 
characterizing vector fields on X, i.e., cross section of the tangent bundle 
T(M).  Thus, in this case the map 

f - , o ( f ,D)  

is a vector field, i.e., an element of F(T(M)).  Let o(D) denote this vector 
field. Call it the symbol of D. It is known (Hermann, 1977c) that every such 
vector field arises from a derivation of '5(X). We have then proved (as a 
warm-up for the general case of Dirac-type equations) the following result: 

Theorem 2.2. Suppose E =  X •  R so that F (E)  = ~3-(X). The sym- 
bol map 

D-~o(D) 

maps DI(E) linearly onto F(T(X)),  the vector fields on X. It is a 
Lie algebra homomorphism [with D*(E) made into a Lie algebra 
under commutator].  This map exhibits D*(E) as a semidirect sum 
of the Lie subalgebra F(T(X))  and the Lie ideal D~ 

Now let us go to the case of a general vector bundle E. Let E a be the 
dual bundle, i.e., the fiber over a point x ~ X is the dual space to the vector 
space E(x) ,  which is the fiber of E. Then, for "y~ F(E),  0E F(Ea) ,  the map 

f -~O(o(f,D)y) 

is a derivation of ~Y(X) into itself, i.e., a vector field. This defines a bilinear 
map 

o(D): r (E) •  r(E ' )  - F(T(X)) 

Note that this is ~(X)-bil inear,  i.e., commutes with multiplication by 
functions. This property is the algebraic equivalent of what, geometrically, is 
defined as a cross section of a vector bundle. The vector bundle in this case 
is T(E)|174 Dually, o(D) can also be considered as a linear map 

r(E) | r(E 

Now, the cross sections of Td(X) are the one-different forms on X. Let 0 be 
such a form. Then, the symbol operation assigns to 0 a cross section 
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o(D)(O) of the bundle E|  a, i.e., for each x ~ X: 

o ( D ) ( O ) ( x )  

is a linear map: E ~ E. 
Let us sum up as follows. 

Theorem 2.3. Let D: F ( E ) ~  F(E)  be a first-order linear differen- 
tial operator on cross sections of the vector bundle E. The symbol 
a (D)  is a cross section of the tensor product of the tangent bundle 
7"(X) to X and the bundle E|  a whose fiber at each point x E X is 
the space of linear maps: E(x)  ~ E(x). a(D)  = 0 if and only if D is 
a zeroth-order differential operator, i.e., a cross section of E| a. 

All this takes a simple form in a more traditional notation using 
coordinates and a local product structure for E. Suppose 

(x") ,  0 ~ < t ~ < n - I  

is a coordinate system of functions on X. Let 

O~- Ox" 

be corresponding dual basis of vector fields. Locally, we have 

E ~ X X V  

where V is a vector space. F(E)  can then be identified with the space of 
maps 7: X ~  V. A first-order differential operator D: F ( E ) ~  F(E)  is then 
of the form 

D = A"0, + A (4) 

where x ~  A"(x), A(x)  are maps from X to L(V,V) ,  the vector space of 
linear maps: V -  V (or m • m matrices, if V =  12'"). Then, 

Also, 

o ( D , f )  = A"0~,(f) f o r f E  ~ ( X )  

o ( D , f ) = A " ~ ( ~ )  

(5) 
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hence 

o(D)(O) = AuO(O,) (6) 

if 0 is a one-differential form on X. 
Thus, all this elaborate algebraic formalism is not really essential. 

However, it serves three useful purposes: 

1. It proves, a priori, that the operator on the right-hand side of (6) is 
independent of coordinates for X and the local product structure for 
the vector bundle E. 

2. It emphasizes the underlying nature of the assignment 

D--c(D) 

as a cross section of a vector bundle assigned to a "differential 
operator." It may be thought of as a passage from "analysis" to 
"geometry."  

3. Its purely algebraic nature suggests extensions to spaces X which are 
broader than the class of finite-dimensional, differentiable mani- 
folds. Two possibilities are the following: 
a. Manifolds with singularities 
b. Infinite-dimensional manifolds. 

Although I will not go into it here, each of these extended classes of 
manifolds has algebras attached to it (in terms of "sheaves" or "schemes") 
that plays the same role in the more extended theories that the C ~ functions 
play in ordinary manifold theory. 

3. CO-RIEMANNIAN METRICS 

Let X be a manifold. In differential geometry, a Riemannian metric is a 
cross section of the symmetric tensor product of the cotangent bundle with 

itself: 

F(Td( X)| X)) 

[In classical tensor language, it is a tensor field of type (0, 2).] Alternatively, 
it is a symmetric ~'u X)-bilinear map: 

g: r(T(x)) • r(T(X)) -  v(x) 
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Such an object is said to be nonsingular if it is nondegenerate, i.e., if 

g(F(T(X)),V)=O for VEF(T(X)) implies V = 0  

Of course, when one speaks (in either mathematics or physics) of a 
"Riemannian metric," one usually only means a nonsingular one. 

About ten years ago, I started development of the theory of the dual 
objects that I call co-Riemannian metrics (Hermann, 1973b-d; 1975; 1976). 
As we shall see, they appear naturally in terms of the geometric structure of 
linear differential operators (and quantum mechanics!). 

Definition. A co-Riemannian metric on X is a cross section gJ of the 
symmetric tensor product bundle 

T(X)oT(X) 

i.e., a if( X)-bilinear symmetric map 

r(T,,( X)) 

which assigns a function ga(O 1, 02) to each pair (0~, 02) of one-differential 
forms on X. Such a g'~ is said to be nonsingular if the following condition is 
satisfied: 

g~(r(T~(X)),O) =0 impl ies  0 = 0 

If ga is nonsingular, the symmetric matrix defining the tensor field in local 
coordinates can be inverted, and ga defines a Riemannian metric in the 
usual sense. However, the singular cases also occur naturally, and the 
"Riemannian metrics" and their "duals" should be studied separately. [A 
similar remark applies to the "symplectic structures", i.e., the "cosymplectic 
structure" should be studied as well. See Hermann (1975; 1977b; 1976). 
These structures do come up in many interesting physical situations, espe- 
cially in Dirac's work.] 

In Hermann (1975; 1973c, d; 1976), some of the rudimentary notions 
associated to these "co-Riemannian metrics" were briefly developed (for 
example, the generalization of what is meant by "geodesic," and the ways 
this geometric notion can be applied in analysis), and I will not go into it 
here. One of the most important geometric features of the "co" objects is 
their behavior under mappings. Riemannian metrics "pull-back" under 
mapping, the co-Riemannians "push forward." This is closely related to the 
concept of "Riemannian submersion," which plays a role in many physical 
theories that use Riemannian geometric ideas. 
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An important  use of the co-Riemannian metric is in connection with 
the role of symmetry groups of the underlying geometric structure. Let ga be 
a co-Riemannian metric on X, and let G be a transformation group on X 
consisting of automorphisms of the structure. Suppose (for simplicity) that 
the action of G on X is regular in the sense that the orbit space GxX can be 
made into a manifold, with the quotient map q~: X--, G x X  (assigning to each 
x ~  X the orbit on which it lies) being a submersion. Then, there is a 
co-Riemannian metric g,a on GxX such that 

~5 . ( gJ ) = g ''1 

Let us now return to the study of first-order linear differential opera- 
tors, and the study of co-Riemannian metrics to which they give rise. 

4. CO-RIEMANNIAN METRICS ASSOCIATED WITH FIRST-ORDER 
LINEAR DIFFERENTIAL OPERATORS 

Let us now return to the situation of Section 2. E ~ X is a complex 
vector bundle over the manifold X. D: F ( E ) ~  F(E)  is a first-order linear 
differential operator. Let L(E)  be the vector bundle over E whose fibers 
over each point x ~ E is the space L(E(x) ,  E(x)) of linear maps: E(x) 
E(x)  of the fiber of E into itself. [In a formula, L(E)  = E| The symbol 
of D can be considered as a map 

( x , O ) ~ o ( D ) ( O )  

which assigns an element of L(E)(x)  to each covector 0E X a.,.. Now, set 

gd( el ' 02 ) = �89 t r ( o ( D ) ( O ,  )o( D)(O 2 )*) (7) 

ga is then a complex-valued symmetric bilinear form on X~- As x varies, 
its real and imaginary parts define co-Riemannian metrics on X (in general, 
singular, of course). 

Let us recall how this goes for the Dirac equation: 

X = R 4 

E = X X C  4 

Space-time coordinates on X are denoted by (x#), 0 ~< p. ~< 3. Let 

D = A"3~ (8) 
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where (A ~) are (constant) 4 •  matrices such that 

A~A '' + A"A ~ = g""l 

where (g~,,,) [the inverse matrix to (g~'")] is the Lorentz metric tensor 

d s  2 = gu,,dxUdx" 

Apply the trace operator to both sides of (9): 

tr( AUA '' ) + tr( A"A" ) = 2 g"'" 

o r  

Then, 

Hence, 

Hermann 

(9) 

tr( A"A '' ) -- g~'" (10) 

o ( D ) ( O )  = A"O( O, ) 

g"( O,. 02) = �89 A"O,( O. ) A"02( O,, ) ) 

= g""O,(O.)02(O,, ) using (10) 

We have proved the following theorem: 

Theorem 4.1. The co-Riemannian metric associated 
equation is dual to the Lorentz metric. 

( l l )  

with the Dirac 

Thus we see concretely how a "geometric" structure may be determined 
by an analytic one. One may readily go further and study Riemannian 
metrics more general than flat ones determined by first-order differential 
operators. In the physics literature this goes under the slogan "The Dirac 
equation in General Relativity." Deformation of the metric leads, via the 
method of Belinfante and Rosenfeld, to the energy-momentum tensor 
(Hermann, 1973d). However, further work in this direction will be pursued 
in another publication. 

A further structure is needed in order that a linear differential operator 
define a quantum system, namely, a "conservation law" that defines a 
probability structure. 
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5. HILBERT SPACE STRUCTURES ON THE SPACE OF 
SOLUTIONS OF A FIRST-ORDER LINEAR 

DIFFERENTIAL OPERATOR 

Let us return to the case of general complex vector bundle E over a 
manifold X with a first-order linear differential operator 

D: F ( E )  ~ F ( E )  

given. Let F0(E) be the space of cross sections with compact support, i.e., 
those that vanish outside of some compact subset of X. Since D is a 
differential operator, D maps Fo(E) into itself. We will now investigate the 
possibility of defining positive definite Hermitian inner product structures 
(i.e., "incomplete Hilbert spaces") 

("/1' "Y2) ~ <~I/'Y2} 

on F0(E) by integration over submanifolds of X. Once this is done, these 
spaces can be completed with respect to the inner product to obtain 
complete Hilbert spaces, which can serve in the usual way as the raw 
material for quantum mechanics. 

The simplest way to define Hermitian inner products on F0(E) is the 
direct generalization of the classical L2-theory. For x E X, k integer, let 
Ak(X,-) be the space of k-multilinear, skew-symmetric, real-valued forms on 
X,., i.e., the space of k-covectors of the tangent space. Let Ak(X) be the 
corresponding vector bundle. The cross sections F(Ak(X)) are then the 
k th-degree differential forms on X. 

Consider an R-bilinear bundle map 

h : E • 1 7 4  n = d i m X  

Thus, for x ~ X, h maps the complex vector space fibers 

E(x)• E(x)- .  A"( X)| 

(e, .e2)~h(e,,e2) 

real-bilinearly. Suppose also that it is Hermitian symmetric and positive 

definite, i.e.. 

h(e,,e2)=h(e2,e,)* 

h(e,e)>O i fevaO 

h(e,,ce2)=ch(el.e2) for c ~ C  
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Suppose now that Yi, ~'2 E F0(E ). Then, 

h(v , (x ) .  

is an nth-degree differential form, which can be integrated over X. Set 

{v, /v2} = v2) (12) 

Then, ( / }  satisfies all the conditions for a complex Hilbert space (except, 
of course, completeness). 

Now, we must consider generalizations of (12). To allow for various 
interesting possibilities, all the data must be varied. 

1. h takes values in A~(X)| for 0 < k  < n .  
2. h depends on the derivatives of y~, Y2; i.e., h is a form defined on the 

jet-bundles j / ( E )  associated with E. 
3. h depends on variables in addition to those of X, e.g., variables on a 

manifold that is a fiber space vr: Z --* X over X. 

I will now describe one of the generalizations that seems to play a key 
role in the quantum mechanics of linear differential operators. Suppose Y is 
a manifold of dimension n - 1. Let G n I(X) be the Grassmann bundle over 
X, i.e., the fiber of G'-~(X) over a point x E X  is the space of all 
(n - 1)-dimensional linear subspaces of X,. Thus, if 

q~: Y ~ X  

is a submanifold map, there is a map, which we denote by 

0~ 

of Y ~  G" I(X), that assigns to each y~  Y the ( n -  1)-dimensional, linear 
subspace 

of X,C~. r 
Suppose now that h is a function of 

o- ( x )  

el ,e2EE(x)  
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and takes values on 

Denote this map by 

A" '( x ) |  

h(y ,6 ,  e,,e2) 

815 

Now, suppose that ~,1, 72 are elements of F0(E). The map 

y ~ h(y ,  q~.(y), y,(qJ(y)) ,  72(~(Y)))  

then defines an (n - l)st degree differential form on the (n - 1)-dimensional 
manifold Y. The integral over Y is then defined as 

(Y,/Y2) 

Of course, this inner product, as defined over all of F0(E), will not be 
positive definite. However, our goal is to define Hilbert space structures on 
the space F(D)  of solutions of a first-order linear differential operator 

D: F ( E )  ~ F ( E )  

One would also require that ( / )  not depend on the choice of submanifold 
map 4. This is the "conserved current" condition that is familiar from the 
standard treatises in quantum mechanics. Let us look at the SchrOdinger 
equation from this point of view. 

6. THE SCHRODINGER EQUATION FROM THE 
FIRST-ORDER POINT OF VIEW 

Let X be space-time, i.e., R 4 with Cartesian coordinates 

x 0 -- t, the space components x = (x  s ), 1 ~< j ~< 3 

Let 00, 0, be the corresponding vector fields. 
Let E be the product bundle 

X •  

The cross sections of E are then the s p a ~  of maps ~: X-~ C, i.e., the 
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complex-valued functions 

q,(x,I) 

of space-time, i.e., the "SchrOdinger wave functions." Let 

A = - i h O  o + ( i h a i -  a j ) ( i h a i -  a , ) +  V (13) 

be the Schr6dinger operator. ( a , , V  are fixed functions of x and t. h is 
constant.) In order to convert this into a first-order operator, consider the 
inhomogeneous equation 

Aq, = f (14) 

Put 

Then, 

e o = 

ej = (ihO I -- a , ) r  

(ih~, - a j ) ( e j )  = ih3o( e o ) -  Ve o + f 

Thus, (14) is equivalent to the following first-order system: 

( ih~, - a, )e o - e j = 0 

( ika, - a j ) (  e, ) + Veo - ih3o( eo) = f 

Let us write this in matrix form. Set 

e o 

e 1 

Y =  e2 

e3 

= ,ha, 

Then, (15) and (16) are equivalent to 

V - p 0 ,  P , - a l ,  p 2 - a 2 ,  P 3 - a 2  
P l -  al,  - 1, 0, 0, 

P 2 -  a2, 0, - 1 ,  0, 

P 3 -  a3, 0, 0, - 1, 

j = 1 , 2 , 3  (15) 

(16) 

(iv) 

(18) 

e0 / 

e, = 0 (19) 
e2 0 
e3 0 
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o r  

A(x ,p ) , {=6  (20) 

Computing the co-Riemannian metric associated with this operator 
amounts to computing the 

tr(A 2) 

Now, using (19) 

2 )2  ~ "~ 
t r ( A 2 ) : ( V - p o  + ( p , - a ,  + ( p 2 - a 2 ) - + ( p 3 - a 3 ) -  

2 "~ +(p , - -a ,  + l+(p2- -a2)2+l+(p3- -a3)"  (21) 

We see that the co-Riemannian metric--essentially the quadratic terms in 
the p ' s  in (21)-- is  just the flat (positive) metric o n  R 4. 

One might ask next how the Galilean group affects all this. In 
Hermann (1970b) it is shown that the Galilean group (considered as a 
transformation group on R 4) acts as "conformal"  symmetry of the 
SchrOdinger operator. Let us now return to the general situation to investi- 
gate this point. 

7. C O N F O R M A L  ACTION ON FIRST-ORDER LINEAR 
DIFFERENTIAL OPERATORS AND THEIR SYMBOLS 

Let us return to the case of a complex vector bundle E over a manifold 
X. Let ~': E -~ X denote the bundle projection map. For x ~ X, let 

E ( x )  = 

be the fiber of ~, a finite-dimensional complex vector space. 
Let G be a transformation group that acts on E as a vector bundle 

automorphism. Thus, each g E G is a diffeomorphism of E such that: 

a. There is a diffeomorphism gx on X such that 

7rg = gxrr 

G thus induces a group G x of transformations on the base such that 
the map g--. gx of G-~ G is a homomorphism. For x E X, each 
g E G maps the fiber E(x) onto the fiber E(gx). 

b. Each g ~ G maps the fiber vectors spaces E(x) linearly and isomor- 
phically onto E(gx ). 
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Such a geometric action of G on E induces a linear action of G on the 
vector space F ( E)  of cross sections 

g ( y ) ( x ) = g - ' ( y ( g ( x ) )  f o r g ~ G , x E X  (22) 

This construction of linear representations of groups is basic in physics 
(e.g., in quantum field theory) and in mathematics ("induced representa- 
tions"). 

A special sort of bundle automorphisms are the (scalar) gauge transfor- 
mations. An element of this group is a mapping 

07: x -  t - ( O )  

Such an element acts on E and on F (E)  as follows: 

rne=m(x)e f o r x ~ X ,  e E E ( x )  (23) 

( m y ) ( x ) = m ( x ) y ( x )  f o r x E X ,  y ~ F ( E )  {24) 

Let F (E )  be the group of such transformations. 
Now, let G be a given group of linear bundle automorphisms, and let 

D, D': V(E)  ~ F ( E )  

be linear differential operators. We say that g E G transforms D into D' if 
the action of g on F (E)  transforms D' into D, i.e., if 

o r  

g 'D'g= D (25) 

D'g = gD 

Now, relation (26) implies the following property: 

If y E F ( E )  is a solution of D(~,) = 0, 

then ~ ' =  g(~,) is a solution of D'(~,') = 0 

Proof. Equation (26) means that 

D'(gy)=gD('y)  

= 0  i f D ( v ) = O  

(26) 

(27) 
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Thus, if D = D',  (27) means that g is a symmet~ of the differential 
equation D = 0, i.e., it maps one solution into another. There are more 
general possibilities for generating such symmetries, which we shall now 
describe. 

Suppose g E G, D, D '  and m ~ M ( E  ) are such that 

g- ID'g =nlD (28) 

Definition. If (28) is satisfied, we say that the pair (g, m ) E  G X M conform- 
ally maps D onto D'. Again, if (28) is satisfied then, for each solution -y of 
D = 0, g(y)  is a solution of D ' =  0. 

Theorem 7.1. Let (g, m) be a conformal symmetry of the differen- 
tial operator D. Let gx be the diffeomorphism of the base space X 
associated with the bundle automorphism g: E ~ E. Let 

p: T a ( X ) •  

be the co-Riemannian metric associated with D. Then gx acts as a 
conformal transformation on the co-Riemannian metric, i.e., 

( g x ) , ( o ) = f p  for s o m e f  e ~Y(X) (29) 

The proof follows routinely from the definitions, and is left to the 

reader. 
This result is useful because it can serve to determine the structure of 

the group G D of conformal symmetries of the operator D. The map g ~ gx is 
a homomorphism of G D onto a subgroup of the group of conformal automor- 
phisms of p. If P is nondegenerate, the latter is a group about which there is 
much known. [For example, if p is the Lorentz metric X =  R 4. then the 
group of conformal isometries is O(4,2), which is in turn the basic group 
underlying Penrose's  "Twis tors ,"  and other mass-zero Poincar~- 
invariant theories.] Of course, to complete the description of the algebraic 
structure of G D, it is necessary to know the kernel of the homomorphism 
g -~ g,v, to know the conformal symmetries of D, which acts as (non-Abelian) 
"pure"  gauge transformations, i.e., preserve each fiber of the vector bundle 
E-~  X. Let us briefly consider the conditions for this in terms of a local 
coordinate system (x~'), 0 ~<~, ~, ~< 3, for X and a product structure E = X • 
C" for E. D is then of the form 

D =  A~O~+ A 
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where (A ~', A) are 4 •  matrices that depend on x. Then, F ( E )  consists of 
the maps 7: X ~  C". If g is a "pure" gauge transformation, it is of the form 

( g T ) ( x ) = M ( x ) 7 ( x )  

where x ~ M(x)  is a map X ~  GL(n,C). Hence, the condition that such a g 
be a conformal symmetry is 

AU~uM + A M =  fM( AU~u + A ) 

o r  

AUM = fMA" 

A"O,( M )+ AM = fMA 

for s o m e / ~  ~,~(X) 

(30) 

(31) 

The compatibility of equations (30) and (31) is thus a necessary condition 
for the existence of conformal gauge symmetry of the differential equations. 

8. THE PROJECTIVE SPACE OF A HERMITIAN SPACE AS 
THE Q U A N T U M  STATE SPACE 

We now leave the study of linear differential operators in order to 
discuss certain relations with the more conventional Hilbert space formu- 
lation of quantum mechanics. We shall work with what the functional 
analysts call " incomplete  Hilbert spaces." To avoid this awkward term, we 
call them Hermitian spaces, which we now define. 

Let H be a complex vector space; denote a typical element by g,. To 
define H as a Hermitian space means to define an R-bilinear map 

( ~,, q~,_) ~ (q< /+2  } 

H •  

such that 

(+,/+2} = (+2/+2)* 

( +~/c~2) -- c( +,/  +2) 

<+/+)~>0 

equality holds only if q~ = 0 
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If  A : H ~ H is a linear map, the adjoint (if it exists), is a linear map A* such 
that 

(4',/A4'2) = ( A*4', /  4':) 

The projective space P(H) is the space whose elements are the one- 
dimensional  linear subspaces o of H. The tangent bundle T(P(H)) is the 
space of ordered pairs: 

(5, V) 

oEP(H) ,  v ~ H / o  

The map T( P( H )) ~ P ( H ) ,  

(o,v)-o 

defines T(P(H)) as a complex vector bundle over P(H). 
If H has a Hermit ian structure, a Hermitian structure is induced on 

each of the fibers of  the vector bundle T(P(H)). For o ~  P ( H ) ,  i.e., o a 
one-dimensional  linear subspace of H, let o • be the orthogonal  complement  
of  o in H, Since o is finite dimensional, H is a direct sum of o and o ~. (Note  
the classical argument  works in this " incomple te"  case, since o is finite 
dimensional.)  Thus, H/o can be identified with o-C The tangent bundle to 
the projective space can thus be identified with o-c, a subspace of H. 

Now, define a symplectic structure for F (H) ,  i.e., a real-valued, nonde- 
generate skew-symmetric two-form ~o on T(P(H)) (it is readily verified that 
its exterior derivative is zero): 

'~'(4',. 4'2) = i ( ( < / 4 ' 2 )  - ( 4 ' 2 / 4 ' ~ ) )  (32) 

This form can be used to define a Poisson bracket {,} for real-valued 

functions on P ( H ) .  
Each Hermit ian symmetric linear map A : H ~ H defines a real-valued 

function f4 on P ( H ) :  

L(o)-  (4'/A4') 03) 
(4' /4')  

where 4' is an element that generates 4'. The following results are proved in 

Hermann  (1973b). 
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Theorem 8.1. 

Then 

If A~, A 2, A~ are Hermitian linear maps with 

A3 =i[AI,A2] 

(/A,, s,,) 

Theorem 8.2. Suppose that H is a finite-dimensional vector space of 
dimension n. Let co" be the differential form of degree 2n on P(H), 
i.e., the volume element form associated with the symplectic struc- 
ture. Then, 

fp L w  " =  t r (A)  
(t l)  

This relation is a key link between "'classical" and " 'quantum" statisti- 
cal mechanics. It relates the symplectic geometry of P ( H )  (hence "'classical 
mechanics") to a key invariant of the Hermitian structure. Here is another 
such link. 

Let A: H ~  H be a Hermitian operator. Consider the SchrOdinger 
equation: 

ih~T = A+ (34) 

to be solved for curves t ~ f ( t )  in H. We now show how these equations are 
the Hamil ton equations associated with the symplectic structure on P ( H ) .  

Consider a solution t ~ +( t )  of (34) such that +( t )  v ~ 0 for all t. Let o(t) 
be the projection on P(H). Let fA be the real-valued function A defined on 
P( H ) [Formula (33)]. 

Theorem 8.3. The curve t -~ o( t )  in P(H) that the solution t --, ~( t )  
of (34) defines, is then a solution of Hamil ton 's  equations (with 
respect to the symplectic structure) with Hamiltonian f4/h. 

Again, the proof of this is a routine chasing of definitions. 
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9. THE PROJECTIVE SPACE ASSOCIATED WITH SCHRI)DINGER 
PARTICLE MECHANICS AND THE COTANGENT BUNDLE OF 

A SPACE OF MEASURES ON THE CLASSICAL 
CONFIGURATION SPACE 

We have seen that the natural symplectic manifold for abstract quan- 
tum mechanical dynamical systems is the projective space of a Hermitian 
space H. Let us now specialize H to be the Hermitian space appropriate to a 
particle moving on the real line, - o c  < x < oo, denoted X. Let H be the 
space of complex valued, C ~, rapidly decreasing functions 

on X. 

x-q (x) 

f 
CC 

( + , / + 2 )  = dx (35) 

Let S(H) be the unit sphere in H, i.e., the set of +E  H such that 

( ~ / @ ) - - 1  (36) 

Let U(I) be the multiplicative group of complex numbers of absolute value 
one. U(1) acts freely on S(H) .  

(;k, ~b) ~ ~.+ (37) 

? ~  U(1), 4,ES(H) 

P ( H )  is the orbit space of the action of U(I) on S(H) .  
Given a +~S(H) and a real number h > 0  (to be identified with 

Planck's constant), it can be written in "po la r"  form: 

= v'Te 's/h (38) 

where x -,  P (x  ), S (x)  are rapidly decreasing, real-valued functions such that 

P ( x ) ~ > 0  (39) 

f~  P(x) dx = 1 (40) 
d 

The role of the decomposition (38) in the description of the "classical limit" 
of quantum mechanics (WKB, etc.) is well known. It is also one of the 
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sources in physics of the modern theory of "Fourier  integral operators" 
(Treves, 1980). (Another source is the theory of classical wave propagation.) 

Let ':?(X) be the space of probability measures on X that are defined 
by everywhere nonzero, one-differential forms Pdx on X with x ~ P(x) a 
C ~- rapidly decreasing function satisfying 

P ( x ) > 0  f o r x E X  (41) 

f ~  P(x) dx = 1 (42) 

The tangent bundle T(".P(X)) is the set of pairs (Pdx, 0), with 

Pdx E ~:~'( X) (43) 

0 is a smooth, rapidly decreasing one-form on X such that 

f,o = o (44) 

T(~:P(X)) is a vector bundle over ~5'(X); the fiber is the form 0 satisfying 
(44). The dual bundle (which we think of as the cotangent bundle to the 
space of smooth probability measures on X) is constructed as follows. Let 
t~:(X) denote the space of C ~, real-valued functions on X. Let the additive 
group R of real numbers act on 'ZP(X)• ~5(X) as follows: 

(c,( Pdx, S)) - ( P d x , (  S + c)) (45) 

Then Ta(~P(X)) is defined as the orbit space of T(~:P(X)) under this action. 
The duality between the fibers of Ta(~:P(X)) and T(~:P(X)) is defined as 
follows: 

((~'~'dx, 0), (,I dx, S )) = .SO (46) 

Notice that the condition (42) implies that this functional is invariant under 
the group action (43). 

Theorem 9.1. For each h > 0, the space TJ(':~'(X)) can be mapped 
into P( H ), where H is the "SchrOdinger" Hermitian space. Namely, 
define 

eoh(Pdx, S)  = image of f i l e  's/h in P ( H )  (47) 

4' pulls back the natural symplectic form on SP(H)  to the natural 
symplectic form on cotangent bundles. 
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Proof First, notice that q,~ is indeed well defined by formula (47). For 
if (Pdx, S), (P'dx, S') are on the same orbit of the action [via (46)] of R, 
then the right side of (47) is equal. 

A tangent vector v to TJO:P(X)) at the point (Pdx, S) is a pair 
(Q(x)dx, S), where Q(x)dx is a one-form such that 

fe/x)dx:o 
and S is a real-valued, C ~, rapidly decreasing function. The symplectic 
form ~o is defined as follows: 

w((Qdx, f ),(Q'dx, f ' ) )  : fv  ( . / ' Q d x  - fQ'dx) (48) 

The proof of the rest of Theorem 9.1 is a routine verification of 
formulas that is left to the reader. 

In Hermann (1965) one will find further work, particularly showing 
how "observables," i.e., real-valued functions on states, may be defined, and 
their relation in the "classical" and "quantum" cases. 

10. EMBEDDING OF THE CLASSICAL MECHANICAL SYMPLECTIC 
STATE MANIFOLD INTO THE QUANTUM MECHANICAL ONE 

AND THE "HYDRODYNAMICAL' '  INTERPRETATION 
OF QUANTUM MECHANICS 

Given a (finite-dimensional) manifold X that is the configuration space 
of a classical mechanical system (with a finite number of degrees of 
freedom), we have constructed the space vP(X) of smooth probability 
measures on X, whose cotangent bundle may be identified with the projec- 
tive space associated with the Schr0dinger space. One may ask for the 
relation between these two symplectic "manifolds," one finite, the other 
infinite dimensional. (Unfortunately, the space of measures, even the 
"'smooth" ones, admits nothing like any of the infinite-dimensional mani- 
fold structures that have been defined rigorously in the functional analysis- 
global analysis literature.) 

However, it was shown in Hermann (1965) that, if one adds to 
TJ(':P(X)) certain "ideal" elements, there was a natural embedding of 
TJ(X) into TJC:P(X)). The classical dynamics is a one-parameter flow 
on TJ (X)  that preserves the simplectic structure. The quantum dynamics is 
a flow on Ta(~P(X)) with Planck's constant h appearing as a parameter. 
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(This already suggests that the deformation of groups and geometric struc- 
tures plays a role!) Thus, we can envisage flows in Ta(@(X)) that leave 
invariant precisely, or to a certain order, the space corresponding to the 
embedding of T't(X) into TJ(@(X)). In essence, this was already done in 
the 1920s by the physicists, under the name " the  hydrodynamical interpre- 
tation of quantum mechanics" (Madelung, 1926). 

To briefly sketch this embedding, let us restrict attention to the 
simplest case, a particle on the line X with coordinate x E R. As usual 
(Abraham & Marsden, 1978), identify TJ(X) with R2, with coordinates 
labeled 

X, I ')  

(y  is the momentum.) @(X) is identified with the differential forms 

p(x)dx 

p(x)>~o 

f p ( x ) d x = l  

However, now allow distributions as coefficients of these differential forms; 
for example, elements of the form 

8(x -a )dx  

where x ~ 8 ( x )  is the Dirac delta function. 
Now, associate with a point (x o, yo)~TJ(X) the following element 

(p(x)dx, S(x)), of Td(@( X)): 

p(x) = 8 ( x -  :,-0) d. ,  ~ 

S ( x ) =~v'o (49) 

This defines a mapping 

T"( X ) -  T"(~:~( X)) 

which has certain natural properties. Further details may be found in 
Hermann (1965) and volume 2 of Hermann (1970b). 
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11. CLOSING REMARKS 

As mathematicians and physicists have come to realize (again!), dif- 
ferential geometry and physics have many common interests. Geometers 
have developed a warehouse of "geometric" structures and concepts, and 
physicists have the contact with reality that is needed to keep the study of 
such mathematical generalities from sterility. 

In the period 1925-1930 the physicists (with Dirac at the lead) intro- 
duced a wealth of new ideas, many with a strong underlying geometric 
component, whose mathematical structure has not yet been fully explored. 
(After all, mathematicians rived on the Newtonian ideas for two hundred 
years!) 

In this paper, I have suggested two such areas: the geometric structure 
of linear differential operators [which also ties in with recent developments 
in analysis (Treves, 1980; Taylor, 1981)], and the theory of infinite-dimen- 
sional symplectic manifolds. 
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